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Slow dynamics and aging in a nonrandomly frustrated spin system

Hui Yin and Bulbul Chakraborty
Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254

~Received 26 July 2001; published 15 February 2002!

A simple, nondisordered spin model has been studied in an effort to understand the origin of the precipitous
slowing down of dynamics observed in supercooled liquids approaching the glass transition. A combination of
Monte Carlo simulations and exact calculations indicates that this model exhibits an entropy-vanishing tran-
sition accompanied by a rapid divergence of time scales. Measurements of various correlation functions show
that the system displays a hierarchy of time scales associated with different degrees of freedom. Extended
structures, arising from the frustration in the system, are identified as the source of the slow dynamics. In the
simulations, the system falls out of equilibrium at a temperatureTg higher than the entropy-vanishing transition
temperature and the dynamics belowTg exhibits aging as distinct from coarsening. The cooling rate depen-
dence of the energy is also consistent with the usual glass formation scenario.
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I. INTRODUCTION

The exact nature of the glass transition in supercoo
liquids is still an enigma. The hallmark of this transition is
precipitous slowing down of the dynamics without any a
companying, obvious, structural changes@1,2#. The analo-
gous transition in spin glasses, which have quenched
domness, is much better understood and the theore
understanding in that field has benefitted from the existe
of simple microscopic models@3#. A search for models tha
do not have disorder at the microscopic level but disp
glassy dynamics has been one of the important direction
current research. In this paper, we present a detailed ana
of a nondisordered spin model whose phenomenology is
markably similar to that of supercooled liquids. The mod
can be solved exactly in a certain limit@4#, and the exact
results can be related to the glassy dynamics observe
simulations of the model. This connection can be exploi
to address the issue of the origin of the rapid divergence
time scales@5# in supercooled liquids.

It is well known that relaxation times diverge at a critic
point @6#, however, unlike critical points, there is no obviou
length-scale divergence that has been associated with
glass transition. Recent experiments@2,7,8# and simulations
@9# point toward the existence of dynamical heterogenei
@2,7,8# and a time-dependent length scale@9# that grows as
the glass transition is approached. This raises the questio
whether the occurrence of a critical point is responsible
the anomalously slow relaxations observed in glasses, a
so what is the nature of this critical point. A scenario pr
posed by Adam, Gibbs, and DiMarzio@10# and Mezard and
Parisi @11# is that glassy dynamics is associated with an
derlying configurational entropy vanishing transition. T
slow relaxation is due to the small equilibrium entropy ne
the glass transition temperature and the growing length s
is associated with cooperatively relaxing regions. This the
is compatible with Kauzmann’s entropy crisis argument@12#,
which predicts a lower limit of the glass transition tempe
ture and is supported by experiments measuring config
tional entropy in the glass forming liquids@13#. In recent
years, this scenario has been explicitly realized inp-spin spin
1063-651X/2002/65~3!/036119~13!/$20.00 65 0361
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glasses as a random first-order transition@14–17#. Based on
an inherent structures approach@18#, indications of a similar
scenario have been found in simulations of Lennard-Jo
systems@19#. In a different approach, the observed tim
scale divergence with no apparent length-scale diverge
has been rationalized on the basis of a zero-temperature
cal point @20# that has characteristics similar to the critic
point in a random-field Ising model@21#. The frustration-
limited domain theory@22# predicts the presence of dynam
cal heterogeneities and relates it to the divergence of re
ation times. A major obstacle in obtaining definitive answe
to the questions regarding the glass transition is the iden
cation of simple, nondisordered models where these po
bilities are explicitly realized.

In recent years, studies have focused on microsco
models with no quenched disorder that exhibit glassy
namics. Models in this category include a ferromagne
four-spin plaquette model on a cubic lattice@23# that exhibits
aging @24#, three-dimensional Ising models with competin
nearest and next-nearest-neighbor interactions@25# exhibit-
ing logarithmic growth. Besides these, there are constrai
dynamics models, as for example, the two-dimensional
romagnetic Ising model with three-spin interactions@26#.
The presence of a critical point has not been related to
glassy dynamics in any of these models.

The model studied in this paper is the compressib
triangular-lattice, Ising antiferromagnet~CTIAFM! @27#. We
will present results of a Monte Carlo~MC! simulation study
of the dynamics in the supercooled state of CTIAFM and
exact solution in the limit of vanishing ‘‘thermal’’ fluctua
tions. The exact solution exhibits a critical point that is a
companied by a vanishing of configurational entropy. T
model and its equilibrium behavior are discussed in Sec
In Sec. III, we introduce a mapping of the spin model to
geometrical model and the exact solution is discussed in S
IV. In Secs. V and VI, we present our MC study of th
supercooled phase and the glass phase, respectively.
conclusions are presented in Sec. VII.

II. CTIAFM MODEL

The CTIAFM is a simple extension of the well-know
triangular-lattice Ising antiferromagnet~TIAFM ! @28,29#.
©2002 The American Physical Society19-1
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FIG. 1. A dimer covering corresponding to
spin configuration can be obtained by puttin
dimers crossing the ferromagnetic bond conne
ing the centers of the two triangles sharing th
bond. ~a! The dimer covering for a random
TIAFM ground-state configuration.~b! A special
dimer covering that is mapped from the stripe
order spin configuration and characterized by
vertical dimers. This dimer covering serves as
reference in defining the string picture.
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The TIAFM is a fully frustrated model and has no fini
temperature transition. The number of ground states is ex
nentially large, and theT50 state is critical, characterize
by a power-law decay of spin correlation functions@30#. The
critical ground state has been studied extensively by m
ping to interface models@31,32#. The effect of degeneracy
lifting fields on the TIAFM and the resulting possibility o
phase transitions has also been the subject of many inv
gations@29,31,33,34#.

In CTIAFM, a coupling to elastic strain fields removes t
degeneracy of the ground state@35#. In our current study
only homogeneous strain fields are considered; the distor
is uniform and does not depend on the site. Thus, the a
tional degrees of freedom are encapsulated in three s
fields, $ea ,a51 . . . 3%, in the Hamiltonian:

H5J(̂
i j &

SiSj2eJ(
a

ea (
^ i j &a

SiSj1N
E

2 (
a

ea
2. ~1!

Here J, the strength of the nearest-neighbor antiferrom
netic coupling, is modulated by the presence of the sec
term that defines a coupling between the spins and the s
fields $ea%. The couplinge is chosen to be a positive con
stant to ensure that the antiferromagnetic interaction g
stronger when spins get closer. The last term represents
elastic energy needed to stabilize the unstrained lattice anN
is the total number of lattice spins. This model can
thought of as a spin model with anisotropic couplings. T
anisotropic couplings are determined by the strain fields
are, therefore, annealed variables as opposed to models
fixed ~quenched! anisotropy@29,31#.

The phase transitions of this model were analyzed in
context of the effects of elastic strain fields on ordering tr
sition in alloys@27#. This, and other previous studies, show
that the competition between energy and entropy leads
first-order transition at a finite temperatureT1 @35,36#. Above
T1 , the system is in a disordered, paramagnetic state and
lattice is contracted isotropically in three directions. Belo
T1 , there is a lattice distortion and the spins order as stri
with alternating up and down rows: the ferromagnetic bon
are elongated, and antiferromagnetic bonds are contra
The ordered state is sixfold degenerate since up and d
spin rows can alternate in any of the three nearest-neigh
directions and the state also has the Ising up-down symm
Thus, the CTIAFM ground-state entropy density is zero
has been argued that there is an instability to the lattice
03611
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tortion at a temperature belowT1 @35#. In the following sec-
tion, we introduce a geometrical mapping that is valid for
spin configurations within the ground-state ensemble of
TIAFM and study phase transitions within this ensemble
the coupling to the strain fields is varied. The model can
exactly solved in this limit where excitations out of th
TIAFM ground state, the ‘‘thermal’’ fluctuations, are ne
glected.

III. STRING PICTURE—CTIAFM REVISITED

There is a well-known mapping of the ground states of
TIAFM on to string configurations@31,34#. This string pic-
ture has proven to be extremely useful in understanding
behavior of the CTIAFM.

Any spin configuration belonging to the ground state
the TIAFM has two antiferromagnetic~satisfied! bonds and
one ferromagnetic~unsatisfied! bond in every triangular
plaquette. A dimer covering@34,37# can be defined on the
dual lattice for these spin states. The dimers are placed
those bonds of the dual honeycomb lattice that connect
centers of triangles sharing an unsatisfied~ferromagnetic!
bond. Since there is exactly one unsatisfied bond for ev
triangle, any site on the dual lattice is connected to exa
one dimer. The resulting dimer covering is unique. Figu
~1a! shows such a dimer covering for an arbitrary grou
state. Under this dimer mapping, the spins in the strip
phase define a dimer covering@Fig. ~1b!#, where all dimers
are aligned in one direction~vertical in this example!. Based
on the dimer mapping, the ground states can be categor
into different sectors by superposing a dimer covering o
the standard dimer covering in Fig.~1b! where all dimers are
vertical. The overlap defines linear structures. For exam
the spin state in Fig.~1a! is mapped onto the string picture i
Fig. ~2a!. Each string sector is characterized by a string nu
ber densityp5Ns /L whereNs is the total number of strings
and L is system size. Under such mapping, the disorde
paramagnetic states with the maximum number of free sp
@30# correspond top52/3 and the striped ordered spin stat
correspond top50. For each string sectorp, the total num-
ber of spin states can be enumerated by using a tran
matrix technique@34#. The associated entropy density is
continuous function that peaks atp52/3 and vanishes atp
50 ~cf. inset to Fig. 3!.

The strings obtained from the TIAFM ground-state sp
configurations do not intersect. They run vertically throu
9-2
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SLOW DYNAMICS AND AGING IN A NONRANDOMLY . . . PHYSICAL REVIEW E 65 036119
the system without being interrupted, therefore, the num
of strings per row is conserved. Under periodic bound
conditions, strings wrap around and form loops. If the syst
is restricted to the TIAFM ground-state ensemble, the nu
ber of strings does not change under any local dynam
~single or multiple spin flips or exchanges!. Thus, spin states
belonging to different string number sectors are comple
disjoint. These string sectors are the inherent structures@18#
of the TIAFM within any local dynamics: any spin configu
ration will relax to one of the string sectors under ener
minimization.

Excitations out of the TIAFM ground-state ensemble

FIG. 2. A string picture is obtained by overlapping a dim
covering with the reference dimer covering of Fig. 1~b!. The filled
circles are free spins, the spins that have three satisfied and
unsatisfied bonds. As can be seen, the free spins are always ti
the strings.~a! The string mapping from the spin configuration
Fig. 1~a!. ~b! A string mapping that has a fewer number of string

FIG. 3. Entropy and the dimensionless free energy as funct
of the string densityp ~dimensionless!. ~a! Entropy per spin from
the work of Dharet al. @34#. ~b! The dimensionless free energ
f (p) for m50.18.T* for this value ofm is 0.397. Temperature is
measured in units of 1/kB .
03611
er
y

-
s

ly

y

-

volve triangular plaquettes with all three spins pointing up
down. These plaquettes are topological defects at which
strings can end@31#. The TIAFM ground states and the a
sociated dimer coverings can be mapped to an interf
model with a scalar height variable@31,32,38# and the de-
fects are dislocations in the height field. The height mapp
can be used to demonstrate that the TIAFM ground stat
critical with power-law correlations and the defects form t
basis of the Coulomb-gas representation of this model@31#.
Defects play an important role in the dynamics of the strin
@39#. Single spin flips or exchanges create defects in p
that can then move away from each other. Each separ
defect pair is connected by two strings. Thus, defects
increase or decrease the number of strings by two as
move toward or away from each other.

A previous Monte Carlo study has shown that wh
quenched below the first-order transition temperatureT1
from the disordered phase, the CTIAFM exhibits a behav
remarkably similar to the phenomenology of the structu
glass@36,39#. For a range of supercooling temperatures,
system remains disordered and the supercooled phase
godic. Below a certain characteristic temperatureT* , how-
ever, the system freezes into a ‘‘glassy’’ phase. In this pha
the system becomes nonergodic and the energy evolutio
characterized by a stepwise relaxation that is hist
dependent.

In this paper, we present an analytic solution of t
CTIAFM within the ground-state ensemble of the TIAF
and show that the coupling to the elastic strain fields lead
a phase transition at which the string density vanishes
continuously. We analyze the glassy dynamics observe
Monte Carlo simulations in terms of the string picture a
the phase transitions occurring within the ground-state
semble@4#.

IV. PHASE TRANSITIONS WITHIN THE GROUND-STATE
ENSEMBLE OF THE TIAFM

The string picture is rigorously defined when the sp
states are restricted to the configurations without any defe
In the TIAFM, all these configurations have identical en
gies. In the CTIAFM, however, the energy of the state d
pends on the string density@4#. To see this, one integrates o
the purely Gaussian strain fields in the CTIAFM Ham
tonian @Eq. ~1!# that yields an energy function with a four
spin coupling and a coupling parameterm5e2J2/E:

H5J(̂
i j &

SiSj2~m/N! (
a51,2,3

S (
^ i j &a

SiSj D 2

. ~2!

The first term is identical for all configurations in th
ground-state ensemble, and can be neglected. The
(^ i j &aSiSj , can be written in terms of the string density
the directiona, i.e., the overlap of the dimers with a configu
ration where all dimers are pointing in thea direction. Under
simple periodic boundary conditions, where each str
wraps only once around the system, two of the three str
densities have to be equal. In addition, the constraint
there are two good bonds per triangular plaquette, lead

ree
to

.
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HUI YIN AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 65 036119
the condition that the sum of the three string densities h
to add up to the numerical value of two. With these co
straints, only one string density is independent and the
ergy per spin of the CTIAFM can be written as

H/N52~m/2!@~122p!212~12p!2#, ~3!

wherep is the one independent string density. Since the
ergy depends only on the string density and the entropy d
sity for a given string density has been calculated exa
@34#, the partition function of the model can be calculat
exactly: Z5(p exp$2N@bH(p)2g(p)#%5(p exp@2Nf(p)#.
Here g(p) is the entropy per spin of the string sector wi
string densityp @34# and b is the inverse temperature. Th
sum over p can be replaced by exp@2Nfmin(p)#, where
f min(p) is f (p) evaluated at the string densityp that mini-
mizes the free-energy functionf (p). This free-energy func-
tion, which is exact if excitations out of the ground-sta
ensemble of the TIAFM are neglected, is shown in Fig. 3.
small coupling constants, the free energy function show
single global well atp52/3. As the coupling constant i
increased, a second minimum develops atp50. A first-order
transition is expected at that value of the coupling cons
where the two minima become degenerate. In our model
four-spin coupling is of infinite range and the barrier
nucleation is unsurmonuntable. If the system is initially
the p52/3 state, it will remain indefinitely in this state. At
higher coupling constant, however, thep52/3 state become
unstable, as shown in Fig. 3. This is akin to a spinodal po
@40# except that the order parameter is the string density
involves extended structures and is not the average of
local quantity. The instability of the 2/3 state is also
entropy-vanishing transition since the entropy of thep50
state is zero.

Within the ground-state ensemble of the TIAFM, no loc
dynamics can change the density of strings. The entro
vanishing transition can, therefore, be realized in two wa
~a! by allowing the system to explore states outside
ground-state ensemble by creating defects and~b! by imple-
menting a nonlocal dynamics that can change the string d
sity without moving out of the ground-state ensemble. In t
paper, we discuss the dynamics resulting from the first
proach by allowing for the presence of a small density
defects. As will be discussed in the next section, we conc
trate on analyzing the nature of the relaxations as
entropy-vanishing transition is approached without addre
ing the issue of whether this transition survives as a t
thermodynamic transition in the presence of defects.

Before proceeding to the discussion of the simulatio
we would like to point out that the entropy-vanishing tran
tion is akin to a zero-temperature critical point since t
‘‘thermal’’ fluctuations, in the form of defects, are frozen an
play no role at the critical point. The relevant coupling isbm,
the coupling to the elastic strain that controls the frustrat
@20#. This scenario is reminiscent of the zero-temperat
critical point in the random-field Ising model@21# with bm
playing the role of the random field.

The exact solution can also be viewed in the context
inherent structures@18,19# and shows that there is a pha
03611
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transition involving these structures. At small values ofbm,
the inherent structures belong to thep52/3 sector and the
configurational entropy is finite. Asbm is increased, there is
a thermodynamic instability of this sector leading to
change in the nature of the inherent-structure landscape.
set of inherent structures that are accessible to the sys
thus, changes at the transition. As our simulations will sho
this change can lead to an anomalous slowing down of
dynamics.

V. DYNAMICS IN SUPERCOOLED PHASE

In this section we present a detailed discussion of
observed dynamics in the supercooled phase. To implem
the local dynamics we used spin-exchange kinetics exten
to include updates of the homogeneous strain fields@27#. For
the MC studies presented in this paper, a rhomboid sys
with periodic boundary conditions was chosen. Unless sta
explicitly, the system size is 96396. For all the measure
ments, the sampling is done every ten MC steps. The par
eters of the Hamiltonian were chosen to beJ51, e50.6 and
E52. These imply a value ofm50.18 and the coupling con
stantbm is controlled by the temperature of the MC simul
tion. In units ofJ/kB , the first-order transition temperature
T150.667, and the entropy-vanishing transition temperat
is T* 50.397@4#. The defect density at temperatures close
the entropy-vanishing transition.T* is around 0.04%@4#. We
study this regime in order to investigate the possibility of t
zero-defect critical point controlling the behavior at low b
finite defect densities.

Dynamics of the supercooled phase was studied follow
instantaneous quenches from a random high-temperature
ordered phase into a range of temperatures belowT1 . After
each quench, the system was equilibrated, and the ti
history of various quantities were recorded, and autocorr
tion functions were calculated. The evidence for divergi
time scales has been presented earlier@4#. In this paper, we
extend our analysis to the many different time scales
served and the relationship between them.

A. Relaxations of strings and spins

The MC moves involve spin exchanges and updates of
strain fields. Updates in strain fields change the effect
interaction between spins along the three nearest-neig
directions and this is reflected in the update probabilit
associated with the spin exchanges. Since the strain field
homogeneous, these changes are global.

There are different classes of spins in the system. The
spins have equal numbers of antiferromagnetic and fe
magnetic bonds. They are represented as filled circles in
2 and are located at kinks in the strings. Spin exchan
involving free spins lead to fluctuations of the strings. E
changes involving spins located away from the kinks~which
are not free! lead to the creation of defects. This is an ac
vated process with an energy barrier of 4J in the absence of
any homogeneous strains. The strain fluctuations change
value since the effective interactions become anisotropic
depend on the value of the strain fields. We found that
9-4
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defect density can still be represented by an Arrhenius fo
with an ‘‘effective’’ barrier that is smaller than 4J @41#. The
two different classes of spins, therefore, have very differ
relaxation time scales with the free spins defining the sh
est time scale in the system and the time scale assoc
with the defects growing in an Arrhenius fashion. The d
namics of the spins is, therefore, expected to be heter
neous and controlled by the spatial distribution of strings

The spatial distribution of the strings evolves in time
the strings diffuse across the system. Since the string den
is the order parameter associated with the entropy-vanis
transition, this is expected to be the slowest mode in
system. The spins, therefore, respond to a quasistatic
rangement of the strings. This would lead us to expect n
exponential relaxations for the spins and the energy fluc
tions ~dominated by defect number fluctuations! since
relaxation times depend on the proximity of the spins to
strings. Our simulation results are in qualitative agreem
with these expectations.

The autocorrelation functions of the string densi
Cstring(t)5^p(t)p(0)&2^p(t)&2, at different temperature
are shown in Fig. 4. The correlations functions are seen to
exponentials, exp(2t/t), with t rapidly increasing as the tem
perature decreases. The time scalest obtained from the fit-
ting are plotted against temperature in Fig. 5. The two
markable features of the string relaxation are~a! the
exponential behavior with a single time scale and~b! the
rapid increase of this time scale with an apparent diverge

FIG. 4. Autocorrelation functions~dimensionless! of string den-
sity at different temperatures (1/kB). The curves have been fitted t
exponentials: exp(2t/t). The results of the fitting are presented
Table I.
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at a temperature close toT* . We will discuss these feature
in the context of the entropy-vanishing transition after p
senting the results for the defect, energy, and spin re
ations. The rapid increase of the string-relaxation time sca
restricts our equilibrium measurements to temperatureT
>Tg.0.47, the analog of the laboratory glass-transiti
temperature for our simulations.

The autocorrelation functions of the defect numb
Cdefect(t)5^Nd(t)Nd(0)&2^Nd(t)&2, where Nd is the total
number of defects, are shown in Fig. 6~a!. These functions
are nonexponential and are best fit by stretched exponen
exp(2t/td)

b, with a stretching exponentb decreasing with
temperature and a relaxation timet increasing with tempera
ture. The time-scale increase is Arrhenius@Fig. 6~b!# with no
apparent finite-temperature divergence. The stretching ex
nent approaches a value of 1/3 as the temperature approa
Tg . This is consistent with a theory associating stretch
exponential relaxations with random walks on a hig
dimensional critical percolation cluster where the limitin
value of b51/3 is reached at percolation@42#. The energy
relaxation~Fig. 7! also shows a stretched exponential for
with a b approaching 1/3. Figure 7 also shows the waitin
time (tw) dependence of the correlations functions~cf. dis-
cussion in Sec. VI!. The relaxation times and stretching e
ponents are summarized in Table I. The energy relaxa
time shows a stronger divergence than the Arrhenius beh
ior of the defects, however, the absolute values of the t
scales are orders of magnitude smaller than the str
relaxation times. The stretched exponential relaxation in
cates that the energy and defect relaxations are reflecting

FIG. 5. String density correlation timet @MC simulation
~MCS!#, extracted from the fitting in Fig. 4, shown as a function
temperature. Fits to a Vogel-Fulcher law~solid line!; exp@0.1/(T
20.44)#, power law ~dashed-dotted line!; (T20.41)23.3, and an
Arrhenius fit ~dashed line!; exp(6.54/T) are also shown. The inse
showst ~MCS! with the defect Arrhenius time scale factored o
~cf. text!. The Vogel-Fulcher fit to this effectivet yields a diver-
gence atT50.46 and the power-law fit yields an exponent of 0.
and a divergence atT50.45. The new Arrhenius fit is exp(2.85/T).
9-5



lo

te
d
er
w

tio

in

st
e
at
ti
sin

th
ole
on

a
ar
th
nd
el
la
t

di

The
ring

ring
e-
he
ea-

of
ea-

ble.
ns,
ime

c-
me

at
in

eter
or-
spa-
de-
l-

al

d-

f

e
time
s at

HUI YIN AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 65 036119
spatial heterogeneity imposed by the strings and their s
relaxation.

The spins are the basic microscopic entities in the sys
and the relaxations of the strings and defects get reflecte
the spin relaxation. Spin autocorrelation functions at diff
ent temperatures are shown in Fig. 8. These obey a po
law decay with an exponential cutoff,C(t).ta exp(2t/ts).
As Tg is approached from above, the relaxation timets in-
creases exponentially and closely tracks the string relaxa
time. The exponenta decreases withT and the value is close
to 1/4 at T50.47. The results from the fits are shown
Table II. The exponent 1/4 characterizes spin relaxation
the critical ground state of the pure TIAFM. This sugge
that for times short compared to the string relaxation tim
the spins respond as they would in the TIAFM ground-st
ensemble, except for the perturbation due to defect crea
and annihilation; an effect that decreases with decrea
temperature.

The results of the simulations discussed above, show
there are multiple relaxation mechanisms in the superco
state of the CTIAFM and that the spin and energy relaxati
become increasingly nonexponential as the temperature
proachesT* . The slowest mode, the string density, is ch
acterized by a single time scale. The string density is
‘‘order parameter’’ for the entropy-vanishing transition a
the exponential relaxation is consistent with a mean-fi
transition. Since the strings are extended objects, their re
ations create a spatially heterogeneous environment for
local degrees of freedom, the spins and the defects, provi

FIG. 6. ~a! Defect number autocorrelation functions and~b! cor-
relation times,t ~MCS!, at different temperatures (1/kB). The au-
tocorrelation functions can be fitted to stretched exponenti
exp(2t/td)

b. The stretching exponentb decreases withT and td

increases withT in an Arrhenius fashion with a barrier correspon
ing to the defect creation energy.
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a mechanism for the stretched exponential relaxations.
observation of a stretching exponent similar to that appea
in the theory based on percolations clusters@42# is intriguing
and suggests that the possibility of such a scenario occur
in the CTIAFM should be explored further. The results pr
sented in Table I indicate that there is a variation in t
stretching exponent with the physical quantity being m
sured. The source of this variation is the specific sampling
the heterogeneites present in the system. Experimental m
surements in supercooled liquids find such variations@43#
among quantities whose relaxation times are compara
The best fits to the simulation data for relaxations of spi
defects, and strings suggest that, in our model, both t
scales and stretching exponents vary@being 1 for strings and
zero ~log! for spins#. We have been unable to generate a
ceptable fits by forcing the relaxation times to be the sa
for the different quantities that we have measured.

We have argued that the entropy-vanishing transition
T* can lead to the anomalously slow dynamics observed
our simulations because the time scale of order-param
relaxations,t, diverges at this transition and because the
der parameter involves extended objects that can create
tial heterogeneities. As shown in Fig. 5, the temperature
pendence oft can be described well with either the Voge
Fulcher exponential increase@44# or a power law with a large

s;

FIG. 7. The energy autocorrelation functionsCE(tw ,t) at differ-
ent temperatures aboveTg ~top panel! where it is independent o
tw , and at different waiting timestw , at a temperatureT50.45 that
is below Tg ~bottom panel!. In the top panel, the solid lines ar
stretched exponential fits. The stretching exponents and the
scales obtained from the fits are shown in Table I. The curve
T50.45 are obtained from the measurement ofCE(t) over different
ranges oftw . From bottom to top, these ranges are 0,t0,25 000
MCS, 18 000 MCS,t0,48 000 MCS, and 50 000 MCS,t0

,80 000 MCS.
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TABLE I. Results from fitting the string autocorrelation functions and defect number autocorrel
functions. The first column is the temperature. The second and third are the correlation time of the
density and its associated error bars from the exponential fit. The next two columns are the values ob and
td from the defect number autocorrelation functions fitted to a stretched exponential form. The la
columns are the values oftE andb from the energy autocorrelation fitted to a stretched exponential for

T t ~string! Dt ~string! b ~defect! td ~defect! tE ~energy! b ~energy!

0.6 457 45 0.4460.01 13.5 12.6 0.4260.004
0.57 1223 119 0.3960.01 15.3 13.4 0.3860.01
0.55 2161 505 0.3860.01 19.8 23.0 0.4060.04
0.52 2860 593 0.3660.02 23.8 29.8 0.3860.02
0.50 4124 378 0.3760.02 33.0 49.0 0.3560.01
0.48 7081 370 0.3460.02 45.8 67.8 0.3460.03
0.47 15 472 2575 0.3360.01 54.5 87.2 0.3260.03
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exponent. An Arrhenius fit~no finite temperature diver
gence!, shown in Fig. 5, is unable to describe the rapid
crease int that changes by a factor of.50 in the tempera-
ture interval between 0.6 and 0.47. Since the string dynam
is mediated by defects in our simulation, the intrinsic tim
scale associated with the dynamics is temperature depen
and grows in an Arrhenius fashion~cf. Fig. 6!. Factoring this
time scale out fromt would reflect the slowness arising from
purely cooperative behavior, and the resulting effective str
relaxation time scale is shown in the inset to Fig. 5. This p
highlights the deviation from Arrhenius behavior and pr
vides strong evidence for a finite temperature divergence
lowing the Vogel-Fulcher form. The absolute scale of t

FIG. 8. Spin autocorrelation functionsC(t) at different tempera-
tures (1/kB) aboveTg . The curves have been fitted to power-la
decays with an exponential cutoff,ta exp(2t/ts). The results of the
fitting are presented in Table II.
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effective relaxation times is, however, much smaller sin
the activated defect motion contributes to the overall slo
ness of the dynamics.

We do not have an explanation of the anomalously f
increase of the string-relaxation time scale, however, all
observations suggest that this is an intrinsic property of
entropy-vanishing transition and that the extended structu
play a crucial role. Further evidence supporting the cla
that the entropy-vanishing transition has a character diffe
than a usual mean-field critical point, was provided by
study of the fluctuations in string density over different tim
intervals.

B. Distribution function of string number deviation

The nature of the string-density fluctuations was mo
tored by measuring the distribution of the string density d
ferenceP„Dp(t)…, whereDp5p(t1t0)2p(t0) defines the
deviation of the string density in the timet. The distribution
is generated by choosing different time originst0 . Figure 9
shows the distributionP(Dp) for T50.55 andT50.47. For
high temperatures, both at short and long time intervalst, the
distribution is close to a Gaussian. Att50, P(Dp) is just ad
function peaking atDp50. As t increases, the width of the
distribution gets broader and shows significant non-Gaus
character. At some intermediate time, the distribution
comes the broadest. After that, the distribution narrows do
and reaches a stationary Gaussian distribution. AtT50.55,
the distribution becomes broadest att54000. As T de-
creases, this intermediate time scale increases rapidly, an

TABLE II. The correlation timets and exponenta extracted
from the fitting of the spin autocorrelation function to the for
Ct2a exp(2t/ts) at different temperatures.

T ts ~spin! a ~spin! C ~prefactor!

0.6 865 0.36 0.88
0.55 1140 0.32 0.78
0.52 1980 0.30 0.75
0.50 2170 0.28 0.72
0.47 4910 0.25 0.64
9-7
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HUI YIN AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 65 036119
T50.47, the distribution becomes broader and broader w
t, and the stationary distribution is not observed for times
long ast530 000. According to the usual picture of the d
namics of a system near a critical point, the distribution
the order parameter difference is expected to become sta
ary at a time scale comparable to the relaxation time
increases rapidly as the critical point is approached@6#. The
distribution is also expected to show significant no
Gaussian character atT;Tc(L), whereL is the system size
To make a direct comparison, a measurement of the ma
tization deviation, similar to the measurement of the strin
density deviation, was undertaken for an Ising ferromag
on a square lattice withL564. The distribution of magneti
zation deviation at time intervalt. P„M (t01t)2M (t0)…,
was found to reach a stationary distribution for differentT as
shown in Fig. 10. It is evident that this behavior is differe
from what was observed for the strings. This difference
tween the strings relaxation behavior and that of the us
order parameter, however, is not reflected inCstring(t). The
equilibrium Cstring(t) can be directly related to the secon
moment of the distributionP„Dp(t)… as

^„Dp~ t !…2&5^„p~ t !2p~0!…2&52^p2&22^p~ t !p~0!&

52~^p2&2^p&2!S 12
^p~ t !p~0!&2^p&2

^p2&2^p&2 D .

FIG. 9. The distribution functions of the string density~dimen-
sionless! deviation at various time differencest ~MCS!. The distri-
bution is generated by choosing different time originst0 . The areas
under the curves have been normalized to unity. AtT50.55, a
broad, non-Gaussian distribution function is seen att54000, after
which the distribution narrows back down to Gaussian. AtT
50.47, the distribution becomes broader and broader witht, and the
stationary distribution is not observed for times as long as 30 0
This behavior of the string density distribution is to be contras
with the behavior shown in Fig. 10 that depicts the behavior of
magnetization near an Ising, ferromagnetic critical point.
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Thus,

Cstring~ t !5
^p~ t !p~0!&2^p&2

^p2&2^p&2 512
^„Dp~ t !…2&

2„^p2&2^p&2
…

.

We have measured̂„Dp(t)…2& and find that̂ „Dp(t)…2& in-
creases monotonically witht despite the non-Gaussian b
havior at the intermediate time. Therefore, a measuremen
the second moment is not an adequate measure of the
plexity of the relaxation.

This picture of the string-density relaxations is suf
ciently different from the commonly accepted picture of o
der parameter relaxations to justify further investigation. O
obvious question that needs to be answered is whether
defect-mediated dynamics is responsible for the behavio
whether the zero-defect critical point is controlling it. We a
in the process of exploring these issues.

C. Spin dynamics in different string-density sectors

To better understand the effect of ‘‘quenched-in’’ spat
heterogeneities due to slow string relaxations, we stud
spin relaxations in different string-density sectors. In orde
fix the system in a certain string density sector, the simu
tion was started from an initial spin configuration that has
desired string density, and then was run at very low tempe
ture (T50.05). At this temperature, the energy barrier f
creating defects is too large to be overcome within tim

0.
d
e

FIG. 10. The distribution functions of the magnetization~dimen-
sionless! deviation at various time differencet measured in a squar
lattice Ising ferromagnet with system sizeL564. The critical tem-
peratureTc(L).2.27. The areas under the curves have been n
malized to unity. The relaxation behavior of the order paramete
the ferromagnetic critical point is seen to be different from that
the strings in CTIAFM.
9-8
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SLOW DYNAMICS AND AGING IN A NONRANDOMLY . . . PHYSICAL REVIEW E 65 036119
scales comparable to the spin relaxation times and def
are effectively excluded from the system. String dens
stays at the initial value throughout the simulation time. T
strain elastic energy scale is much smaller than that of de
creation, and the fluctuation of strain is finite though ve
small.

Figure 11 is a log-linear plot that shows the spin autoc
relation functions for different string sectors. The nature
the relaxation is different for differentp. Whenp>0.25, the
relaxation can be described as a power law with expon
.0.27. For p<0.25, the relaxation can be best fitted
stretched exponentials with the exponents around 1/3~cf.
Table III!. These results show that spin relaxations are
ferent in different string-density sectors. For string densit
close to 2/3, the string environment is homogeneous and
spins see the same environment. For lower string densi
however, there are regions of spins that are string-free
these spins relax very differently from the free spins lead
to stretched exponential relaxations. The spin relaxatio
observed during our free simulations where the string den
is allowed to fluctuate, are described by a power-law cu
by an exponential and is consistent with the string den
fluctuating around 2/3 with a relaxation time that defines
exponential cutoff.

FIG. 11. Spin autocorrelation functionsC(t) for different string
density sectorsp. For p>0.25, the relaxation can be described by
power law. Forp<0.25, the relaxation is best fit to a stretch
exponential form.

TABLE III. Results obtained from fitting the spin autocorrel
tion functions in different string-density sectors to the stretch
exponential form exp@2(t/ts)

b#.

String density ts ~spin! b ~spin!

p50.042 1.93105 0.28
p50.083 7435 0.32
p50.125 1522 0.33
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VI. DYNAMICS IN THE GLASS PHASE

In the preceding section we analyzed the dynamical
havior of the supercooled state as it approachesT* . In this
section, we look at the dynamical behavior in the glass ph
after the system is quenched belowT* . The dynamics is
studied through the measurements of two-time correla
functions and the overlap of different copies of the syste
We also investigate the cooling-rate dependence of var
quantities in a series of continuous cooling simulations.

A. Aging

A characteristic feature of the dynamics of many noneq
librium systems, including a glass, is aging. In the sup
cooled phase, the system behaves as if it is in metast
equilibrium and correlation functions are time translation
invariant. In the glass phase, this is no longer true. Althou
a one-time quantity such as an energy history might sh
metastability as in the supercooled phase, two-time qua
ties reveal that the system is evolving in an important w
The aging of systems can be probed with the correlat
functions, which exhibit a waiting time dependence: the s
tem behavior depends on its age. In Fig. 7, energy auto
relation functions for different waiting times after the syste
has been quenched into supercooled phase (T50.55) and
glass phase (T50.45) are shown. The aging of the system
clearly seen atT50.45.

Under this loose definition of aging, all nonequilibrium
systems age. To distinguish between different types of ag
systems, measurements have been proposed that can cl
aging systems into different categories reflecting the co
plexity of the systems. We use the approach suggested
Barratet al. @45# in our study of the CTIAFM. These author
propose a classification method based on the measureme
an overlap between two identical copies of the system
distinguishes the aging of glassy systems from domain co
ening as in an Ising ferromagnet quenched below its crit
temperature.

In order to measure the overlap, two copies of the sys
are prepared with the same initial configurations and
evolved with the same thermal noise until a timetw . At time
tw , the two copies are separated and subsequently ev
with different realizations of thermal noise for a timet. The
functionQ(tw ,t) measures the overlap of these two config
rations at this time. The quantity limtw→` limt→`Q(tw ,t)

distinguishes different types of aging. The limit oft→` can
be effectively replaced by the limit of correlation functio
C(tw ,t)→0. For glassy dynamics, the overlap approach
zero as the correlationC(tw ,t) decays to zero whereas fo
coarsening systems the overlap approaches a finite valu
the correlation decays to zero@45#. This classification high-
lights the simplicity of phase space of a coarsening sys
against the complexity of phase space in a glassy system
the phase space is complicated, different copies of the sys
with the same age continuously move apart from one ano
and the overlap goes to zero in the limit ofC(tw ,t) going to
zero. In contrast, the simple coarsening systems have a fi
limit of this overlap. This method has been employed in t
studies of many different models including the ferromagne

d
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HUI YIN AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 65 036119
p-spin model@24# where this approach was used as proof
the system being glassy.

Aging in CTIAFM was investigated by equilibrating th
system in a high-temperature phase (T51.0) and instanta-
neously quenching it toT50.35, a temperature belowT* .
The system size used in these studies was 1203120. The
simulation was run freely for a timetw and then three copie
of the system were made and assigned different sets of
dom noise. For different values oftw , the correlation func-
tion within each copy,C(tw ,t)51/N( iSi(tw)Si(t1tw) and
the overlap between different pairs of copies,Q(tw ,t)
51/N( iSi

(1)(t1tw)Si
(2)(t1tw), were monitored. The aver

age of these@at a given (tw ,t)# were stored asQ(tw ,t) and
C(tw ,t). These functions are shown in the bottom panel
Fig. 12 and clearly demonstrate the dependence of the
relation and overlap on the waiting timetw . The decay of
these functions become slower with increasing waiting tim
We chose to average over regimes oftw small compared to
the time over which the correlation and overlap change
nificantly but large enough to provide us with better sta
tics. A more quantitative study will have to involve bett
averaging of data at eachtw because of the history-depende
nature of the glass. AlthoughQ(tw ,t) andC(tw ,t) decay at
different rates for differenttw , they track each other as ca
be seen from the top panel in Fig. 12. For values between
and 1 ofQ(tw ,t) andC(tw ,t), the dependence ofQ on C is
nearly linear. Below 0.3, the curves have a smaller slope

FIG. 12. The top panel shows the overlap,Q(tw ,t) ~dimension-
less!, vs the correlation functionC(tw ,t) ~dimensionless! ~cf. text!
in the glass phase. In the bottom panelC(tw ,t) and Q(tw ,t) are
shown for different ranges oftw ~MCS!.
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extrapolate to zero asC(tw ,t) goes to zero. The data below
0.1 ~not shown in the plot! is noisy because of variation
from one tw to another but definitely exhibit the trend o
Q(tw ,t) for different tw approaching zero asC(tw ,t) goes to
zero.

The trends in overlap and correlation functions indica
that the system is evolving in a phase space that is m
complicated than that of a simple coarsening system.
probed this evolution at a more microscopic level by mo
toring the string density. In Fig. 13~a!, we show the string
density as a function of time for the master run from whi
copies of the system were made. The arrows mark the dif
ent tw’s at which copies were made. The evolution of t
string densities for each of the three copies, created
given tw , are shown in Figs. 13~b!–13~d!. These figures
demonstrate that the overlapQ(tw ,t) vanishes ast→` be-
cause the system can explore different string sectors e
when the string density is close to zero and the waiting ti
is very long. The decay rate ofQ(tw ,t) andC(tw ,t) depends
on the string sector that the system is at, initially. The furth
the string density is from 2/3, the fewer the number of sta
available in the sector implying stronger memory and slow
decay. The tracking ofC(tw ,t) by the overlapQ(tw ,t) is,
however, an intrinsic property of the system and does
depend on the string sector. This property implies that as
relaxation slows down so does the rate at which two cop

FIG. 13. ~a! Time history of the string density after the CTIAFM
is quenched toT50.35. At each of the different times marked b
arrows in~a!, three copies of the system are made and evolved w
independent noise realizations. The panels~b!, ~c!, and ~d! depict
the history of string density of the three copies made attw52000,
40 000, and 76 000 MCS, respectively.
9-10
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SLOW DYNAMICS AND AGING IN A NONRANDOMLY . . . PHYSICAL REVIEW E 65 036119
meander away from each other.
In order to distinguish the overlap behavior describ

above from that of a simple system at times earlier than
equilibration time, we performed similar measurements a
quenching a triangular Ising ferromagnet with the same s
tem size to just aboveTc . We are particularly interested i
the overlap of the system at waiting times smaller than
equilibration time. As seen from Fig. 14, at a waiting tim
tw550, the overlap approaches a finite value as the corr
tion decays to zero. At longertw , after the system ha
reached equilibrium, the overlap and correlation function
independent oftw . In this regime, it can be easily shown th
the overlap is trivially related to the correlation function a
always goes to zero following the correlation@46#. The short
waiting time behavior of the ferromagnetic model is ob
ously different from what we saw in CTIAFM and we wou
like to attribute this difference in behavior to the differen
in the complexity of the free energy landscape.

B. Effects of cooling rate

The easiest way to obtain a glass from a liquid is to c
the liquid fast enough. If the relaxation time scale of t
liquid at a certain temperature becomes larger than the

FIG. 14. Q(tw ,t) andC(tw ,t) after quenching triangular ferro
magnet to just aboveTc . From the top panel,Q(tw ,t) is seen to
reach a finite value fortw550 and vanish fortw51000 and 12 000
as C(tw ,t) decays to zero. In bottom three panelsQ(tw ,t) and
C(tw ,t) are shown as functions of time for differenttw . The be-
havior of Q(tw ,t) at small tw when the system is yet to reac
equilibrium is seen to be different from that of the CTIAFM in th
glass phase~cf. Fig. 12!.
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scale associated with the cooling rate, the liquid fails to re
equilibrium and becomes a glass. Different cooling ra
cause the liquid to fall out of equilibrium at different tem
peratures, which implies different laboratory glass-transit
temperatures. The resulting glass is a nonequilibrium sys
and its properties will in general depend on its history
production. In this section we will explore the cooling ra
dependence of CTIAFM. In Monte Carlo simulation of coo
ing the model glass, we define the cooling rate~g! as

g5
dT

dt
,

wheredt is the number of Monte Carlo steps per spin ov
which the temperature changes bydT. The simulations were
started with the equilibrium configuration at high tempe
ture T55.0, and the energy was measured as a function
temperature during the cooling run. The temperature dep
dence of the energy for different cooling rates is shown
Fig. 15. As seen from Fig. 15, the faster cooling rates m
the system fall out of equilibrium at higher temperatures a
the energy at the end point is higher. A closer look at the e
configurations has shown that for different cooling rates,
end configurations atT50 all belong to the 2/3 string den
sity sector, but with different defect densities. The faster
cooling rate, the higher the defect density and no local ord
ing was observed at the end of the cooling runs for any of
cooling rates. Since this is a mean field model and lo
strain fluctuations are not allowed, such local ordering
suppressed. With the time scales corresponding to the c
ing rates, the string density does not have enough relaxa

FIG. 15. The temperature dependence of the energyE for dif-
ferent cooling ratesg.
9-11
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HUI YIN AND BULBUL CHAKRABORTY PHYSICAL REVIEW E 65 036119
time to explore string density sectors other than 2/3. At l
temperatures, where the defect density is small, the energ
the system can be written asE(T).Estring(p)1Edefect(T),
where the first term is the energy of string sectorp in zero
defect situation, and the second term is the excitation en
arising from a nonzero defect density,r(T), and can be writ-
ten asEdefect(T)5E0r(T). For infinitely slow cooling, the
defect number densityr(T) is expected to be Arrhenius
Since the system gets stuck atp52/3,Estring(p) is a constant
equal toEstring(2/3). The energy fluctuation of the system
mainly from the contribution ofEdefect(T), the dynamics of
the system is dominated by the relaxation of defects. In
picture, the system will fall out of equilibrium at temper
tures wherer(T) falls out of equilibrium at different cooling
rates. So by cooling continuously into low temperature
gime we are essentially probing the dynamical behavior
the defects. From the measured dependence of the energ
temperature, we have extracted the behavior ofr(T) and
compared it to the equilibrium defect density that has
Arrhenius form@41#. As can be seen from Fig. 16, the defe
number density curver(T) deviates from the equilibrium
curve, and the deviation occurs at lower temperatures
lower cooling rates. We, therefore, conclude that the coo
rate dependence of the energy in the CTIAFM arises fr
the freezing in of nonequilibrium defect densities. If th
CTIAFM was subjected to the steepest descent minimiza

FIG. 16. Defect densityr(t) as a function ofb5T21 for dif-
ferent cooling ratesg compared to the equilibrium, Arrhenius form
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of energy at the end point configurations obtained from
cooling runs, the energy would be that of thep52/3 state
and this is the limiting value reached for arbitrarily sma
cooling rates. In this sense, thep52/3 configurations with no
defects frozen in is the ideal glass that would be obtain
from slow cooling.

VII. CONCLUSION

In this paper, we have presented a detailed study o
nonrandomly frustrated spin system that exhibits glassy
havior as exemplified by nonexponential relaxations, rapi
diverging time scales, and aging. The crucial features of
model that were related to the glassy dynamics are~a! the
presence of extended spatial structures and~b! a phase tran-
sition involving these structures that is driven by a parame
controlling the frustration in the system. The extended spa
structures are reminiscent of the dynamical heterogene
observed in experiments@7# and simulations of Lennard
Jones liquids@9#. One of the conjectures based on our stu
is that these dynamical heterogeneities are a consequen
the frustration in the system and they are made up of p
ticles that are in the most energetically unfavorable positio
This conjecture should be experimentally verifiable.

In our model, we have argued that the presence of a t
modynamic phase transition is responsible for the glassy
havior. The nature of this phase transition is unusual in t
the time scale divergence is much stronger than what wo
be expected based on the dynamics of usual thermal cri
points. We have no clear understanding of the source of
unusual behavior, however, it seems certain that the pres
of the extended structures is a crucial factor. This observa
leads to the intriguing possibility that a similar transitio
involving the dynamical heterogeneities, underlies the gla
behavior in supercooled liquids. Measurement of correlat
functions related to the dynamical heterogeneities sho
shed some light on this issue.

Further work is now in progress to identify the exact n
ture of the phase transition in our model. The main quest
that we are addressing is the reason for the rapid diverge
of time scales. The scenario we have observed is reminis
of the transition in random-field Ising models@21# and un-
derstanding this similarity should go a long way toward a
swering the question of what plays the role of the quenc
randomness in a supercooled liquid.
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