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Slow dynamics and aging in a nonrandomly frustrated spin system
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A simple, nondisordered spin model has been studied in an effort to understand the origin of the precipitous
slowing down of dynamics observed in supercooled liquids approaching the glass transition. A combination of
Monte Carlo simulations and exact calculations indicates that this model exhibits an entropy-vanishing tran-
sition accompanied by a rapid divergence of time scales. Measurements of various correlation functions show
that the system displays a hierarchy of time scales associated with different degrees of freedom. Extended
structures, arising from the frustration in the system, are identified as the source of the slow dynamics. In the
simulations, the system falls out of equilibrium at a temperafyreigher than the entropy-vanishing transition
temperature and the dynamics bel@y exhibits aging as distinct from coarsening. The cooling rate depen-
dence of the energy is also consistent with the usual glass formation scenario.
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I. INTRODUCTION glasses as a random first-order transifitd—17. Based on
an inherent structures approddt8], indications of a similar
The exact nature of the glass transition in supercoolegcenario have been found in simulations of Lennard-Jones
liquids is still an enigma. The hallmark of this transition is a Systems[19]. In a different approach, the observed time-
precipitous slowing down of the dynamics without any ac-scale divergence with no apparent length-scale divergence

; ; _ has been rationalized on the basis of a zero-temperature criti-
Cgr&]sp?:]ayr:g?[i’ogbi\gosusih strlggsuergl \fv?l?cnhg{isaz\}e Thuzr?cnhegg ra nc_al point[20] that has characteristics similar to the critical
g pin g ' 4 nt in a random-field Ising modgR1]. The frustration-

domness, is much better understood and the theoretic ﬁ]'

o . . : ited domain theory22] predicts the presence of dynami-
undgrstandmg In th"’}t field has benefitted from the existencgy heterogeneities and relates it to the divergence of relax-
of simple microscopic models]. A search for models that aion times. A major obstacle in obtaining definitive answers
do not have disorder at the microscopic level but display the questions regarding the glass transition is the identifi-

glassy dynamics has been one of the important directions Qfation of simple, nondisordered models where these possi-
current research. In this paper, we present a detailed analysifiities are explicitly realized.

of a nondisordered spin model whose phenomenology is re- |n recent years, studies have focused on microscopic
markably similar to that of supercooled liquids. The modelmodels with no quenched disorder that exhibit glassy dy-
can be solved exactly in a certain linj#], and the exact namics. Models in this category include a ferromagnetic
results can be related to the glassy dynamics observed fiour-spin plaguette model on a cubic latti@3] that exhibits
simulations of the model. This connection can be exploitedaging[24], three-dimensional Ising models with competing
to address the issue of the origin of the rapid divergence ofiearest and next-nearest-neighbor interact{@ exhibit-
time scaleg5] in supercooled liquids. ing logarithmic growth. Besides these, there are constrained
It is well known that relaxation times diverge at a critical dynamics models, as for example, the two-dimensional fer-
point[6], however, unlike critical points, there is no obvious romagnetic Ising model with three-spin interactiof2].
length-scale divergence that has been associated with tHde presence of a critical point has not been related to the
glass transition. Recent experimefi#s7,8 and simulations  9lassy dynamics in any of these models. _
[9] point toward the existence of dynamical heterogeneities . 1he model studied in this paper is the compressible,
[2,7.8 and a time-dependent length sci® that grows as triangular-lattice, Ising antiferromagn€ETIAFM) [27]. We

P e : ill present results of a Monte Carl®C) simulation study
the glass transition is approached. This raises the question S
whether the occurrence of a critical point is responsible fogF the dynamics in the supercooled state of CTIAFM and an

the anomalously slow relaxations observed in glasses, and %xact solution in the !|m|t of _vz_;\mshlng_ ther”?a' quc'Fua-

so what is the nature of this critical point. A scenario pro—t'ons' The exact solution exhibits a critical point that is ac-
posed by Adam, Gibbs, and DiMarzj&0] and Mezard and companied .by a yanlshlng of c_onflgurat_lonal entropy. The
Parisi[11] is that glassy dynamics is associated with an un_:’nogel a|r|]|d Its e.qt“"g“um behavior ar? ?r:scussed |ndS|etc. Il
derlying configurational entropy vanishing transition. The N Sec. 1, we Introduce a mapping of the spin modet to a
slow relaxation is due to the small equilibrium entropy neargeometrlcal model and the exact solution is discussed in Sec.

the glass transition temperature and the growing length scal| - In Selcsd. Vhand Vi, th(ra] prelsent ohur MC studyt_ofltheo
is associated with cooperatively relaxing regions. This theorfUpeerO.oe phase ant d € SgassV|p| ase, respectively. Lur
is compatible with Kauzmann’s entropy crisis argumlerg], conclusions are presented in Sec. Vil.

which pre_dicts a lower limit of the glass transiti_on tempera- Il CTIAEM MODEL
ture and is supported by experiments measuring configura-
tional entropy in the glass forming liquid4.3]. In recent The CTIAFM is a simple extension of the well-known

years, this scenario has been explicitly realizeg-gpin spin  triangular-lattice Ising antiferromagndfTIAFM) [28,29.
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(a) (b)
s ol I *‘l * | * *- +| *‘|‘ "*l AI FIG. 1. A dimer covering corresponding to a
z / =13 c-i +-|-- -|-.e:.|.-e.i_xz+- .|.r.|_- spin configuration can be obtained by putting
AR, iy dimers crossing the ferromagnetic bond connect-
P ORI ing the centers of the two triangles sharing this
R bond. (a) The dimer covering for a random
H 4-{-; R -|--J-}-#-f-*- -*41-* { **—|—~4 TIAFM ground-state configuratior(b) A special
: ‘ £l :_|__ 'i"":'|" 'i' "l"?'i' __l__\- dimer covering that is mapped from the striped-
o . i |3 N \_‘ order spin configuration and characterized by all
N S S . vertical dimers. This dimer covering serves as a
5‘%"‘}*?':?{'?"‘" '*“','\"')"""“;L i - ; i "‘l"“'f""‘|"" reference in defining the string picture.
Rty "ff-I-.?\ WLy | PR 5 i_-+| *‘i o | s + & | u-.i-ﬁ

The TIAFM is a fully frustrated model and has no finite tortion at a temperature below; [35]. In the following sec-
temperature transition. The number of ground states is expdion, we introduce a geometrical mapping that is valid for all
nentially large, and thd =0 state is critical, characterized spin configurations within the ground-state ensemble of the
by a power-law decay of spin correlation functid®§]. The  TIAFM and study phase transitions within this ensemble as
critical ground state has been studied extensively by mapthe coupling to the strain fields is varied. The model can be
ping to interface modelf31,32. The effect of degeneracy- exactly solved in this limit where excitations out of the
lifting fields on the TIAFM and the resulting possibility of TIAFM ground state, the “thermal” fluctuations, are ne-
phase transitions has also been the subject of many investiected.
gations[29,31,33,34
In CTIAFM, a coupling to elastic strain fields removes the
degeneracy of the ground stdi@5]. In our current study
only homogeneous strain fields are considered; the distortion There is a well-known mapping of the ground states of the
is uniform and does not depend on the site. Thus, the addiFIAFM on to string configuration$31,34]. This string pic-
tional degrees of freedom are encapsulated in three stratare has proven to be extremely useful in understanding the
fields,{e,,a=1 ... 3}, in the Hamiltonian: behavior of the CTIAFM.
Any spin configuration belonging to the ground state of
_ the TIAFM has two antiferromagnetisatisfied bonds and
H= ‘J% S5 E‘JE ?H SS+N3 E e @ one ferromagnetic(unsatisfiedl bond in every triangular
plaquette. A dimer coverin§34,37 can be defined on the
Here J, the strength of the nearest-neighbor antiferromagédual lattice for these spin states. The dimers are placed on
netic coupling, is modulated by the presence of the seconthose bonds of the dual honeycomb lattice that connect the
term that defines a coupling between the spins and the stragenters of triangles sharing an unsatisfigerromagnetic
fields{e,}. The couplinge is chosen to be a positive con- bond. Since there is exactly one unsatisfied bond for every
stant to ensure that the antiferromagnetic interaction getgiangle, any site on the dual lattice is connected to exactly
stronger when spins get closer. The last term represents tlwme dimer. The resulting dimer covering is unique. Figure
elastic energy needed to stabilize the unstrained latticdNand (18 shows such a dimer covering for an arbitrary ground
is the total number of lattice spins. This model can bestate. Under this dimer mapping, the spins in the striped
thought of as a spin model with anisotropic couplings. Thephase define a dimer coverifgig. (1b)], where all dimers
anisotropic couplings are determined by the strain fields andre aligned in one directiofvertical in this example Based
are, therefore, annealed variables as opposed to models witm the dimer mapping, the ground states can be categorized
fixed (quencheg anisotropy[29,31]. into different sectors by superposing a dimer covering onto
The phase transitions of this model were analyzed in théhe standard dimer covering in Fig.b) where all dimers are
context of the effects of elastic strain fields on ordering tranvertical. The overlap defines linear structures. For example,
sition in alloys[27]. This, and other previous studies, showedthe spin state in Fig1a) is mapped onto the string picture in
that the competition between energy and entropy leads to Big. (28). Each string sector is characterized by a string num-
first-order transition at a finite temperatdre[35,36. Above  ber densityp=Ng/L whereNg is the total number of strings
T,, the system is in a disordered, paramagnetic state and tlend L is system size. Under such mapping, the disordered
lattice is contracted isotropically in three directions. Belowparamagnetic states with the maximum number of free spins
T,, there is a lattice distortion and the spins order as stripeg30] correspond tg=2/3 and the striped ordered spin states
with alternating up and down rows: the ferromagnetic bondsorrespond tq@=0. For each string sectq; the total num-
are elongated, and antiferromagnetic bonds are contracteber of spin states can be enumerated by using a transfer-
The ordered state is sixfold degenerate since up and dowmatrix technique[34]. The associated entropy density is a
spin rows can alternate in any of the three nearest-neighbaontinuous function that peaks pt=2/3 and vanishes gi
directions and the state also has the Ising up-down symmetry= 0 (cf. inset to Fig. 3.
Thus, the CTIAFM ground-state entropy density is zero. It The strings obtained from the TIAFM ground-state spin
has been argued that there is an instability to the lattice dissonfigurations do not intersect. They run vertically through

Ill. STRING PICTURE—CTIAFM REVISITED

036119-2



SLOW DYNAMICS AND AGING IN A NONRANDOMLY ... PHYSICAL REVIEW E 65 036119

volve triangular plaquettes with all three spins pointing up or
down. These plaquettes are topological defects at which the
strings can endi31]. The TIAFM ground states and the as-
sociated dimer coverings can be mapped to an interface
model with a scalar height variab[81,32,3§ and the de-
fects are dislocations in the height field. The height mapping
can be used to demonstrate that the TIAFM ground state is
critical with power-law correlations and the defects form the
basis of the Coulomb-gas representation of this mQ8é].
Defects play an important role in the dynamics of the strings
[39]. Single spin flips or exchanges create defects in pairs
that can then move away from each other. Each separated
ggfect pair is connected by two strings. Thus, defects can
icrease or decrease the number of strings by two as they
move toward or away from each other.

A previous Monte Carlo study has shown that when
quenched below the first-order transition temperatilife
the system without being interrupted, therefore, the numbefrorn the dlso_rdcred phase, the CTIAFM exhibits a behavior
of StiNaS per row is conserved Un,der eriod’ic boundar rremarkably similar to the phenomeno!ogy of the structural

diti gs per q : df Ip fth Y lass[36,39. For a range of supercooling temperatures, the
icso?eslttlrci’c?tz ds'tgntgrllsev'vrﬁpl)il?/lro?gur?cjnsta?tremer?sgr?{bllet ;:yr?ltﬁn ystem remains disordered and the supercooled phase is er-
ber of strings does not cﬁange under any Iocal, dynamic odic. Below a certain characteristic temperatlite h'ow—

ver, the system freezes into a “glassy” phase. In this phase,

(smgle_or mulU_pIe spin ﬂ'PS or exchangeShus, spin states the system becomes nonergodic and the energy evolution is
belonging to different string number sectors are completely

disjoint. These string sectors are the inherent structiur@ls characterized by a stepwise relaxation that is history

- o : . dependent.
of the TIAFM within any local dynamics: any spin configu- In this paper, we present an analytic solution of the

m;[:]?:qi;v;gigﬁlax to one of the string sectors under ENEIYYCTIAFM within the ground-state ensemble of the TIAFM
o . and show that the coupling to the elastic strain fields leads to
Excitations out of the TIAFM ground-state ensemble in- phase transition at which the string density vanishes dis-
continuously. We analyze the glassy dynamics observed in

Monte Carlo simulations in terms of the string picture and

FIG. 2. A string picture is obtained by overlapping a dimer
covering with the reference dimer covering of Figb)l The filled
circles are free spins, the spins that have three satisfied and thr
unsatisfied bonds. As can be seen, the free spins are always tied
the strings.(a) The string mapping from the spin configuration in
Fig. 1(a). (b) A string mapping that has a fewer number of strings.

(b) — T=045 ' the phase transitions occurring within the ground-state en-
---- T=0.50 i"‘ semble[4].
-—- T=060
-0.2 --= T=090
=0. ¥ IV. PHASE TRANSITIONS WITHIN THE GROUND-STATE

ENSEMBLE OF THE TIAFM

The string picture is rigorously defined when the spin
states are restricted to the configurations without any defects.
In the TIAFM, all these configurations have identical ener-
gies. In the CTIAFM, however, the energy of the state de-
pends on the string densif#t]. To see this, one integrates out
the purely Gaussian strain fields in the CTIAFM Hamil-
tonian[Eq. (1)] that yields an energy function with a four-
spin coupling and a coupling paramejer €2J%/E:

(E SS,

(ij)a

2

@

H=1> S§—(u/N) 2

(i 5123

The first term is identical for all configurations in the
ground-state ensemble, and can be neglected. The sum
2ieSS;, can be written in terms of the string density in
the directiona, i.e., the overlap of the dimers with a configu-

FIG. 3. Entropy and the dimensionless free energy as function§ation where all dimers are pointing in teedirection. Under
of the string density (dimensionless (a) Entropy per spin from  Simple periodic boundary conditions, where each string
the work of Dharet al. [34]. (b) The dimensionless free energy Wraps only once around the system, two of the three string
f(p) for ©=0.18.T* for this value ofu is 0.397. Temperature is densities have to be equal. In addition, the constraint that
measured in units of kf . there are two good bonds per triangular plaquette, leads to
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the condition that the sum of the three string densities havé&ansition involving these structures. At small valuesgai,
to add up to the numerical value of two. With these con-the inherent structures belong to the=2/3 sector and the
straints, only one string density is independent and the ereonfigurational entropy is finite. ABu is increased, there is

ergy per spin of the CTIAFM can be written as a thermodynamic instability of this sector leading to a
change in the nature of the inherent-structure landscape. The
H/N=—(u/2)[(1-2p)?+2(1—p)?], (3)  set of inherent structures that are accessible to the system,

thus, changes at the transition. As our simulations will show,
wherep is the one independent string density. Since the enthis change can lead to an anomalous slowing down of the
ergy depends only on the string density and the entropy derflynamics.
sity for a given string density has been calculated exactly
[34], the partition function of the model can be calculated
exactly:  Z=X,exp[—N[BH(p)— Ap)[}==p exd —Nf(p)].
Here y(p) is the entropy per spin of the string sector with  In this section we present a detailed discussion of the
string densityp [34] and B is the inverse temperature. The observed dynamics in the supercooled phase. To implement
sum overp can be replaced by ekpNf,.(p)], where the local dynamics we used spin-exchange kinetics extended
fmin(p) is f(p) evaluated at the string densip/that mini-  to include updates of the homogeneous strain fig2d$ For
mizes the free-energy functidi{p). This free-energy func- the MC studies presented in this paper, a rhomboid system
tion, which is exact if excitations out of the ground-statewith periodic boundary conditions was chosen. Unless stated
ensemble of the TIAFM are neglected, is shown in Fig. 3. Atexplicitly, the system size is 9696. For all the measure-
small coupling constants, the free energy function shows aents, the sampling is done every ten MC steps. The param-
single global well atp=2/3. As the coupling constant is eters of the Hamiltonian were chosen tobel, e=0.6 and
increased, a second minimum developpat0. A first-order E=2. These imply a value gi=0.18 and the coupling con-
transition is expected at that value of the coupling constanstantBu is controlled by the temperature of the MC simula-
where the two minima become degenerate. In our model thgon. In units ofJ/kg, the first-order transition temperature is
four-spin coupling is of infinite range and the barrier to T;=0.667, and the entropy-vanishing transition temperature
nucleation is unsurmonuntable. If the system is initially inis T* =0.397[4]. The defect density at temperatures close to
the p=2/3 state, it will remain indefinitely in this state. At a the entropy-vanishing transitiof* is around 0.04%4]. We
higher coupling constant, however, the- 2/3 state becomes study this regime in order to investigate the possibility of the
unstable, as shown in Fig. 3. This is akin to a spinodal poinkzero-defect critical point controlling the behavior at low but
[40] except that the order parameter is the string density thdinite defect densities.
involves extended structures and is not the average of any Dynamics of the supercooled phase was studied following
local quantity. The instability of the 2/3 state is also aninstantaneous quenches from a random high-temperature dis-
entropy-vanishing transition since the entropy of fhe 0 ordered phase into a range of temperatures blpwAfter
state is zero. each quench, the system was equilibrated, and the time-

Within the ground-state ensemble of the TIAFM, no local history of various quantities were recorded, and autocorrela-
dynamics can change the density of strings. The entropytion functions were calculated. The evidence for diverging
vanishing transition can, therefore, be realized in two waystime scales has been presented eaflérIn this paper, we
(@ by allowing the system to explore states outside theextend our analysis to the many different time scales ob-
ground-state ensemble by creating defects @ndby imple-  served and the relationship between them.
menting a nonlocal dynamics that can change the string den-
sity without moving out of the ground-state ensembile. In this
paper, we discuss the dynamics resulting from the first ap-
proach by allowing for the presence of a small density of The MC moves involve spin exchanges and updates of the
defects. As will be discussed in the next section, we concerstrain fields. Updates in strain fields change the effective
trate on analyzing the nature of the relaxations as thénteraction between spins along the three nearest-neighbor
entropy-vanishing transition is approached without addresddirections and this is reflected in the update probabilities
ing the issue of whether this transition survives as a truessociated with the spin exchanges. Since the strain fields are
thermodynamic transition in the presence of defects. homogeneous, these changes are global.

Before proceeding to the discussion of the simulations, There are different classes of spins in the system. The free
we would like to point out that the entropy-vanishing transi-spins have equal numbers of antiferromagnetic and ferro-
tion is akin to a zero-temperature critical point since themagnetic bonds. They are represented as filled circles in Fig.
“thermal” fluctuations, in the form of defects, are frozen and 2 and are located at kinks in the strings. Spin exchanges
play no role at the critical point. The relevant couplinggjs, involving free spins lead to fluctuations of the strings. Ex-
the coupling to the elastic strain that controls the frustratiorchanges involving spins located away from the kiGkbich
[20]. This scenario is reminiscent of the zero-temperatur@re not freg¢ lead to the creation of defects. This is an acti-
critical point in the random-field Ising modg21] with B vated process with an energy barrier af h the absence of
playing the role of the random field. any homogeneous strains. The strain fluctuations change this

The exact solution can also be viewed in the context ofvalue since the effective interactions become anisotropic and
inherent structure§l8,19 and shows that there is a phase depend on the value of the strain fields. We found that the

V. DYNAMICS IN SUPERCOOLED PHASE

A. Relaxations of strings and spins
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FIG. 5. String density correlation time [MC simulation
(MCS9)], extracted from the fitting in Fig. 4, shown as a function of
0.01 0 5000 10000 15000 temperature. Fits to a Vogel-Fulcher laisolid line); exp0.1/(T
—0.44)], power law (dashed-dotted line (T—0.41) 33 and an
- Arrhenius fit(dashed ling exp(6.54T) are also shown. The inset
tlme(MCS) showst (MCS) with the defect Arrhenius time scale factored out

(cf. texd). The Vogel-Fulcher fit to this effective yields a diver-
gence afl =0.46 and the power-law fit yields an exponent of 0.66
and a divergence at=0.45. The new Arrhenius fit is exp(2.89/

FIG. 4. Autocorrelation function&limensionlessof string den-
sity at different temperatures (). The curves have been fitted to
exponentials: exp{t/7). The results of the fitting are presented in

Table I. at a temperature close . We will discuss these features
in the context of the entropy-vanishing transition after pre-

defect density can still be represented by an Arrhenius fornsenting the results for the defect, energy, and spin relax-
with an “effective” barrier that is smaller thanJ4[41]. The  ations. The rapid increase of the string-relaxation time scales
two different classes of spins, therefore, have very differentestricts our equilibrium measurements to temperatdres
relaxation time scales with the free spins defining the short=Ty=0.47, the analog of the laboratory glass-transition
est time scale in the system and the time scale associatéemperature for our simulations.
with the defects growing in an Arrhenius fashion. The dy- The autocorrelation functions of the defect number,
namics of the spins is, therefore, expected to be heteroge erec(t) = (Ng(t)Ng(0)) — (Ng4(t))?, whereNy is the total
neous and controlled by the spatial distribution of strings. number of defects, are shown in Figab These functions

The spatial distribution of the strings evolves in time asare nonexponential and are best fit by stretched exponentials,
the strings diffuse across the system. Since the string densigxp(—t/7y)?, with a stretching exponens decreasing with
is the order parameter associated with the entropy-vanishingmperature and a relaxation tinnéncreasing with tempera-
transition, this is expected to be the slowest mode in theure. The time-scale increase is Arrhenfiggy. 6(b)] with no
system. The spins, therefore, respond to a quasistatic agpparent finite-temperature divergence. The stretching expo-
rangement of the strings. This would lead us to expect nonaent approaches a value of 1/3 as the temperature approaches
exponential relaxations for the spins and the energy fluctuar,. This is consistent with a theory associating stretched
tions (dominated by defect number fluctuatipnsince exponential relaxations with random walks on a high-
relaxation times depend on the proximity of the spins to thedimensional critical percolation cluster where the limiting
strings. Our simulation results are in qualitative agreementalue of 3=1/3 is reached at percolatidd2]. The energy
with these expectations. relaxation(Fig. 7) also shows a stretched exponential form

The autocorrelation functions of the string density, with a 8 approaching 1/3. Figure 7 also shows the waiting-
Catrindt) =(P(t)p(0))—(p(t))?, at different temperatures time (t,) dependence of the correlations functidié dis-
are shown in Fig. 4. The correlations functions are seen to beussion in Sec. Jl The relaxation times and stretching ex-
exponentials, exp{t/7), with 7 rapidly increasing as the tem- ponents are summarized in Table I. The energy relaxation
perature decreases. The time scatexbtained from the fit- time shows a stronger divergence than the Arrhenius behav-
ting are plotted against temperature in Fig. 5. The two reior of the defects, however, the absolute values of the time
markable features of the string relaxation af@® the scales are orders of magnitude smaller than the string-
exponential behavior with a single time scale atd the relaxation times. The stretched exponential relaxation indi-
rapid increase of this time scale with an apparent divergenceates that the energy and defect relaxations are reflecting the
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FIG. 6. (a) Defect number autocorrelation functions &l cor-
relation times,r (MCS), at different temperatures (&). The au- FIG. 7. The energy autocorrelation functios(t,, ,t) at differ-
tocorrelation functions can be fitted to stretched exponentials€nt temperatures abovE, (top panel where it is independent of
exp(~t/7y)?. The stretching exponeng decreases witi' and 74 t,, and at different waiting time, , at a temperaturé=0.45 that

increases withT in an Arrhenius fashion with a barrier correspond- S below Tq (bottom panel In the top panel, the solid lines are
ing to the defect creation energy. stretched exponential fits. The stretching exponents and the time

scales obtained from the fits are shown in Table I. The curves at
spatial heterogeneity imposed by the strings and their sIovJ =0.45 are obtained from the measuremenCe(t) over different
P 9 y Imp y 9 ranges oft,,. From bottom to top, these ranges areg<<25 000

relaxation. o o MCS, 18000 MCSt,<48000 MCS, and 50000 MGSt,
The spins are the basic microscopic entities in the system 80 000 MCS.

and the relaxations of the strings and defects get reflected in
the spin relaxation. Spin autocorrelation functions at differ-a mechanism for the stretched exponential relaxations. The
ent temperatures are shown in Fig. 8. These obey a powepsbservation of a stretching exponent similar to that appearing
law decay with an exponential cutof€(t)=t“exp(—t/7). in the theory based on percolations clusfd? is intriguing
As T4 is approached from above, the relaxation timen-  and suggests that the possibility of such a scenario occurring
creases exponentially and closely tracks the string relaxatioim the CTIAFM should be explored further. The results pre-
time. The exponent decreases witfi and the value is close sented in Table | indicate that there is a variation in the
to 1/4 atT=0.47. The results from the fits are shown in stretching exponent with the physical quantity being mea-
Table II. The exponent 1/4 characterizes spin relaxation irsured. The source of this variation is the specific sampling of
the critical ground state of the pure TIAFM. This suggeststhe heterogeneites present in the system. Experimental mea-
that for times short compared to the string relaxation timessurements in supercooled liquids find such variatipf3]
the spins respond as they would in the TIAFM ground-stateamong quantities whose relaxation times are comparable.
ensemble, except for the perturbation due to defect creatiomhe best fits to the simulation data for relaxations of spins,
and annihilation; an effect that decreases with decreasindefects, and strings suggest that, in our model, both time
temperature. scales and stretching exponents vigoging 1 for strings and
The results of the simulations discussed above, show thatero (log) for sping. We have been unable to generate ac-
there are multiple relaxation mechanisms in the supercooledeptable fits by forcing the relaxation times to be the same
state of the CTIAFM and that the spin and energy relaxationsor the different quantities that we have measured.
become increasingly nonexponential as the temperature ap- We have argued that the entropy-vanishing transition at
proachesT*. The slowest mode, the string density, is char-T* can lead to the anomalously slow dynamics observed in
acterized by a single time scale. The string density is theur simulations because the time scale of order-parameter
“order parameter” for the entropy-vanishing transition and relaxations,r, diverges at this transition and because the or-
the exponential relaxation is consistent with a mean-fieldder parameter involves extended objects that can create spa-
transition. Since the strings are extended objects, their relaxial heterogeneities. As shown in Fig. 5, the temperature de-
ations create a spatially heterogeneous environment for theendence ofr can be described well with either the Vogel-
local degrees of freedom, the spins and the defects, providingulcher exponential increafé4] or a power law with a large
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TABLE |. Results from fitting the string autocorrelation functions and defect number autocorrelation
functions. The first column is the temperature. The second and third are the correlation time of the string
density and its associated error bars from the exponential fit. The next two columns are the vgwseslof
74 from the defect number autocorrelation functions fitted to a stretched exponential form. The last two
columns are the values ot and B from the energy autocorrelation fitted to a stretched exponential form.

T 7 (string) A7 (string B (defecy 74 (defec) 7 (energy B (energy
0.6 457 45 0.440.01 13.5 12.6 0.420.004
0.57 1223 119 0.390.01 15.3 134 0.380.01
0.55 2161 505 0.380.01 19.8 23.0 0.460.04
0.52 2860 593 0.360.02 23.8 29.8 0.380.02
0.50 4124 378 0.370.02 33.0 49.0 0.350.01
0.48 7081 370 0.3#0.02 45.8 67.8 0.3#0.03
0.47 15472 2575 0.380.01 54.5 87.2 0.320.03

exponent. An Arrhenius fit(ho finite temperature diver- effective relaxation times is, however, much smaller since
gence, shown in Fig. 5, is unable to describe the rapid in-the activated defect motion contributes to the overall slow-
crease inr that changes by a factor e£50 in the tempera- ness of the dynamics.

ture interval between 0.6 and 0.47. Since the string dynamics We do not have an explanation of the anomalously fast
is mediated by defects in our simulation, the intrinsic timeincrease of the string-relaxation time scale, however, all our
scale associated with the dynamics is temperature dependestiservations suggest that this is an intrinsic property of the
and grows in an Arrhenius fashidof. Fig. 6). Factoring this  entropy-vanishing transition and that the extended structures
time scale out fromr would reflect the slowness arising from play a crucial role. Further evidence supporting the claim
purely cooperative behavior, and the resulting effective stringhat the entropy-vanishing transition has a character different
relaxation time scale is shown in the inset to Fig. 5. This plothan a usual mean-field critical point, was provided by a
highlights the deviation from Arrhenius behavior and pro-study of the fluctuations in string density over different time
vides strong evidence for a finite temperature divergence folintervals.

lowing the Vogel-Fulcher form. The absolute scale of the

B. Distribution function of string number deviation

The nature of the string-density fluctuations was moni-
tored by measuring the distribution of the string density dif-
ferenceP(Ap(t)), whereAp=p(t+ty)—p(ty) defines the
deviation of the string density in the timeThe distribution
is generated by choosing different time origigs Figure 9
shows the distributio®?(Ap) for T=0.55 andT=0.47. For
high temperatures, both at short and long time interiatse
distribution is close to a Gaussian. &t 0, P(Ap) is just ad
function peaking alkp=0. Ast increases, the width of the
distribution gets broader and shows significant non-Gaussian
character. At some intermediate time, the distribution be-
comes the broadest. After that, the distribution narrows down
and reaches a stationary Gaussian distributionT At0.55,
the distribution becomes broadest &t 4000. As T de-
creases, this intermediate time scale increases rapidly, and at

0.10 -

0.01 +

TABLE Il. The correlation timers and exponenix extracted
from the fitting of the spin autocorrelation function to the form
Ct™ “exp(~t/7y) at different temperatures.

0.00

10 100 1000 10000 T 75 (Spin) a (spin C (prefactoy

time (MCS) 0.6 865 0.36 0.88
0.55 1140 0.32 0.78

FIG. 8. Spin autocorrelation functiol(t) at different tempera- 0.52 1980 0.30 0.75
tures (1kg) aboveT,. The curves have been fitted to power-law 0.50 2170 0.28 0.72
decays with an exponential cutoff; exp(—t/7). The results of the 0.47 4910 0.25 0.64
fitting are presented in Table II.
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FIG. 9. The distribution functions of the string densitimen- S _ _ _
sionles$ deviation at various time differencésMCS). The distri- FIG. 10. The distribution functions of the magnetizatidimen-

bution is generated by choosing different time oridigpsThe areas sionlesg deviation at various time differendeneasured in a square
under the curves have been normalized to unity. TAt0.55, a lattice Ising ferromagnet with system size-64. The critical tem-
broad, non-Gaussian distribution function is seen=a#000, after ~ peratureT.(L)=2.27. The areas under the curves have been nor-
which the distribution narrows back down to Gaussian. At Malized to unity. The relaxation behavior of the order parameter at
=0.47, the distribution becomes broader and broadertvithd the  the ferromagnetic critical point is seen to be different from that of
stationary distribution is not observed for times as long as 30 000the strings in CTIAFM.

This behavior of the string density distribution is to be contrasted

with the behavior shown in Fig. 10 that depicts the behavior of theThus,

magnetization near an Ising, ferromagnetic critical point.

2 2
T=0.47, the distribution becomes broader and broader with  c_ . 0= <p(t)|2(0)>—<2p) =1— <(A2p(t)) >2 _
t, and the stationary distribution is not observed for times as s (P9 —=(p) 2((p9)—(P)?)
long ast=30000. According to the usual picture of the dy-
namics of a system near a critical point, the distribution ofWe have measure{Ap(t))?) and find that{ (Ap(t))?) in-
the order parameter difference is expected to become stationreases monotonically with despite the non-Gaussian be-
ary at a time scale comparable to the relaxation time thalhavior at the intermediate time. Therefore, a measurement of
increases rapidly as the critical point is approacf@dThe the second moment is not an adequate measure of the com-
distribution is also expected to show significant non-plexity of the relaxation.
Gaussian character @it-T.(L), wherelL is the system size. This picture of the string-density relaxations is suffi-
To make a direct comparison, a measurement of the magneiently different from the commonly accepted picture of or-
tization deviation, similar to the measurement of the string-der parameter relaxations to justify further investigation. One
density deviation, was undertaken for an Ising ferromagneobvious question that needs to be answered is whether the
on a square lattice with =64. The distribution of magneti- defect-mediated dynamics is responsible for the behavior or
zation deviation at time interval. P(M(to+t)—M(ty)),  Whether the zero-defect critical point is controlling it. We are
was found to reach a stationary distribution for differ€rts  in the process of exploring these issues.
shown in Fig. 10. It is evident that this behavior is different
from what was observed for the strings. This difference be- C. Spin dynamics in different string-density sectors
tween the strings relaxation behavior and that of the usual
order parameter, however, is not reflecteddg;i(t). The
equilibrium Cgin(t) can be directly related to the secon
moment of the distributiofP(Ap(t)) as

To better understand the effect of “quenched-in” spatial
d heterogeneities due to slow string relaxations, we studied
spin relaxations in different string-density sectors. In order to
fix the system in a certain string density sector, the simula-

((Ap(t))2)=<(p(t)— p(O))2)=2<p2>—2(p(t)p(0)> tion_was st_arted from an initial spin configuration that has the
5 desired string density, and then was run at very low tempera-

—2((p?—(p)?)| 1 (P(H)p(0))—(p) ture (T=0.05). At this temperature, the energy barrier for

P P (pH—(p)? | creating defects is too large to be overcome within time
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10.0 : : VI. DYNAMICS IN THE GLASS PHASE

In the preceding section we analyzed the dynamical be-
havior of the supercooled state as it approachies|n this
section, we look at the dynamical behavior in the glass phase
after the system is quenched beldWi. The dynamics is
studied through the measurements of two-time correlation
functions and the overlap of different copies of the system.
We also investigate the cooling-rate dependence of various
quantities in a series of continuous cooling simulations.

-InC

A. Aging

A characteristic feature of the dynamics of many nonequi-
librium systems, including a glass, is aging. In the super-
cooled phase, the system behaves as if it is in metastable
equilibrium and correlation functions are time translational

0.0

10 160 1060 10000 invariant. In the glass phase, this is no longer true. Although
a one-time quantity such as an energy history might show
time (MCS) metastability as in the supercooled phase, two-time quanti-

ties reveal that the system is evolving in an important way.
FIG. 11. Spin autocorrelation functio®X(t) for different string  The aging of systems can be probed with the correlation
density sectorp. For p=0.25, the relaxation can be described by a functions, which exhibit a waiting time dependence: the sys-
power law. Forp<0.25, the relaxation is best fit to a stretched tem behavior depends on its age. In Fig. 7, energy autocor-
exponential form. relation functions for different waiting times after the system
has been quenched into supercooled phdase(.55) and

scales comparable to the spin relaxation times and defeciflass phaseT=0.45) are shown. The aging of the system is
are effectively excluded from the system. String densityclearly seen af =0.45.

stays at the initial value throughout the simulation time. The Under this loose definition of aging, all nonequ”ibrium

strain elastic energy scale is much smaller than that of defeefystems age. To distinguish between different types of aging
creation, and the fluctuation of strain is finite thOUgh Verysystemsy measurements have been proposed that can classify
small. aging systems into different categories reflecting the com-
Figure 11 is a log-linear plot that shows the spin autocorplexity of the systems. We use the approach suggested by
relation functions for different string sectors. The nature ofBarratet al.[45] in our study of the CTIAFM. These authors
the relaxation is different for different. Whenp=0.25, the  propose a classification method based on the measurement of
relaxation can be described as a power law with exponerin overlap between two identical copies of the system that
=0.27. For p=<0.25, the relaxation can be best fitted to distinguishes the aging of glassy systems from domain coars-
stretched exponentials with the exponents around(&f3 ening as in an Ising ferromagnet quenched below its critical
Table ). These results show that spin relaxations are diftemperature.
ferent in different string-density sectors. For string densities |n order to measure the overlap, two copies of the system
close to 2/3, the string environment is homogeneous and adlre prepared with the same initial configurations and are
spins see the same environment. For lower string densitiesyolved with the same thermal noise until a titge At time
however, there are regions of spins that are string-free ang | the two copies are separated and subsequently evolve
these spins relax very differently from the free spins leadingyith different realizations of thermal noise for a tirheThe

to stretched _exponential _relaxa_tions. The spin r_elaxatioqqunction Q(t,,,t) measures the overlap of these two configu-
observed during our free simulations where the string densityations at this time. The quantity lim... lim, .Q(t,.t)
w

is allowed to fluctuate, are described by a power-law cutoffd
by an exponential and is consistent with the string densit
fluctuating around 2/3 with a relaxation time that defines th
exponential cutoff.

istinguishes different types of aging. The limittof:oc can

Ye effectively replaced by the limit of correlation function
eC(tW,t)—>O. For glassy dynamics, the overlap approaches
zero as the correlatiof(t,, ,t) decays to zero whereas for
coarsening systems the overlap approaches a finite value as
the correlation decays to zefd5]. This classification high-
d1ights the simplicity of phase space of a coarsening system
against the complexity of phase space in a glassy system. If
the phase space is complicated, different copies of the system

TABLE lll. Results obtained from fitting the spin autocorrela-
tion functions in different string-density sectors to the stretche
exponential form eXp-(t/7)”].

String density s (Spiny B (spiny with the same age continuously move apart from one another
p=0.042 1.X10° 0.28 and the overlap goes to zero in the limit®(t,, ,t) going to
p=0.083 7435 0.32 zero. In contrast, the simple coarsening systems have a finite
p=0.125 1522 0.33 limit of this overlap. This method has been employed in the

studies of many different models including the ferromagnetic
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FIG. 12. The top panel shows the overl&t,, ,t) (dimension- FIG. 13. (a) Time history of the string density after the CTIAFM

les9, vs the correlation functio€(t,, ,t) (dimensionless(cf. text) is quenched td'=0.35. At each of the different times marked by
in the glass phase. In the bottom pa@l,,,t) and Q(t, ,t) are  arrows in(a), three copies of the system are made and evolved with
shown for different ranges df, (MCS). independent noise realizations. The par(®ls (c), and (d) depict

the history of string density of the three copies madg,at2000,

p-spin model[24] where this approach was used as proof of40 000, and 76 000 MCS, respectively.

the system being glassy. . o extrapolate to zero a5(t,,,t) goes to zero. The data below
Aging in CTIAFM was investigated by equilibrating the (1 (not shown in the plotis noisy because of variations
system in a high-temperature phase<1.0) and instanta-  from onet,, to another but definitely exhibit the trend of
neously quenching it td=0.35, a temperature beloiv* . Q(t, ,t) for differentt,, approaching zero &3(t,, ,t) goes to
The system size used in these studies was<IZD. The ;o0
simulation was run freely for a timk, and then three copies  The trends in overlap and correlation functions indicate
of the system were made and assigned different sets of ragy5t the system is evolving in a phase space that is more
dom noise. For different values &f,, the correlation func- complicated than that of a simple coarsening system. We
tion within each copyC(ty,t)=1/NZ;S(t,)S(t+t,) and  probed this evolution at a more microscopic level by moni-
the overlap between different pairs of copieQ(ty.t)  toring the string density. In Fig. 18), we show the string
= 1N S(t+1,)SP(t+1,), were monitored. The aver- density as a function of time for the master run from which
age of thesg¢at a given ¢,,,t) ] were stored aQ(t,,,t) and  copies of the system were made. The arrows mark the differ-
C(ty,t). These functions are shown in the bottom panel ofent t,,’s at which copies were made. The evolution of the
Fig. 12 and clearly demonstrate the dependence of the costring densities for each of the three copies, created at a
relation and overlap on the waiting timg . The decay of givent,, are shown in Figs. 1B)-13d). These figures
these functions become slower with increasing waiting timedemonstrate that the overla(t,, ,t) vanishes as—x be-
We chose to average over regimestgfsmall compared to cause the system can explore different string sectors even
the time over which the correlation and overlap change sigwhen the string density is close to zero and the waiting time
nificantly but large enough to provide us with better statis-is very long. The decay rate qi(t,, ,t) andC(t,,,t) depends
tics. A more quantitative study will have to involve better on the string sector that the system is at, initially. The further
averaging of data at eatf) because of the history-dependent the string density is from 2/3, the fewer the number of states
nature of the glass. AlthougQ(t,,,t) andC(t,,,t) decay at available in the sector implying stronger memory and slower
different rates for different,,, they track each other as can decay. The tracking o€(t,,,t) by the overlapQ(t,,.t) is,
be seen from the top panel in Fig. 12. For values between 0.Bowever, an intrinsic property of the system and does not
and 1 ofQ(t,,,t) andC(t,,t), the dependence @ onCis  depend on the string sector. This property implies that as the
nearly linear. Below 0.3, the curves have a smaller slope angklaxation slows down so does the rate at which two copies
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FIG. 15. The temperature dependence of the en&rdyr dif-

time (MCS) ferent cooling rates.

FIG. 14. Q(t, ,t) andC(t,, ,t) after quenching triangular ferro-
magnet to just abov&,. From the top panelQ(t, t) is seen to  Scale associated with the cooling rate, the liquid fails to reach
reach a finite value for,,= 50 and vanish fot,,=1000 and 12000 equilibrium and becomes a glass. Different cooling rates
as C(t,,,t) decays to zero. In bottom three pan€st, ,t) and cause the liquid to fall out of equilibrium at different tem-
C(ty,t) are shown as functions of time for differejf. The be-  peratures, which implies different laboratory glass-transition
havior of Q(t,,,t) at smallt, when the system is yet to reach temperatures. The resulting glass is a nonequilibrium system
equilibrium is seen to be different from that of the CTIAFM in the and its properties will in general depend on its history of
glass phasécf. Fig. 12. production. In this section we will explore the cooling rate
dependence of CTIAFM. In Monte Carlo simulation of cool-

meander away from each other. ing the model glass, we define the cooling rég as

In order to distinguish the overlap behavior described
above from that of a simple system at times earlier than the dT
equilibration time, we performed similar measurements after Y= 4t
guenching a triangular Ising ferromagnet with the same sys-

tem size to just abové&.. We are particularly interested in wheredt is the number of Monte Carlo stens per spin over
the overlap of the system at waiting times smaller than the PS PEer Sp

equilibration time. As seen from Fig. 14, at a waiting time ggﬁz dthviittr? Thrzae?tﬂirl?b?iti?%%snﬁyh:ahﬂeoiwgtu Ir?i“%ntsevn\;ereera-
t,=50, the overlap approaches a finite value as the correl q 9 g P

tion decays to zero. At longet,,. after the system has Jure T=5.0, and the energy was measured as a function of

reached equilibrium, the overlap and correlation function aré[emperature during the cooling run. The temperature depen-

independent of,, . In this regime, it can be easily shown that dence of the energy for different cooling rates is shown in

A ; . Fig. 15. As seen from Fig. 15, the faster cooling rates make
the overlap is trivially related to the correlation function and T )
) . the system fall out of equilibrium at higher temperatures and
always goes to zero following the correlatip#6]. The short

" : . . ; . the energy at the end point is higher. A closer look at the end
waiting time behavior of the feromagnetic model is obvi- configurations has shown that for different cooling rates, the
ously different from what we saw in CTIAFM and we would g 9 ’

X . L . . . end configurations at=0 all belong to the 2/3 string den-
:':Et’ht: (gac;[:‘::g:giit?ff ?%zefrfer:ecir:grgsqugsrct:p?e dlﬁerencesity sector, but with different defect densities. The faster the

cooling rate, the higher the defect density and no local order-
ing was observed at the end of the cooling runs for any of the
cooling rates. Since this is a mean field model and local
The easiest way to obtain a glass from a liquid is to coolstrain fluctuations are not allowed, such local ordering is
the liquid fast enough. If the relaxation time scale of thesuppressed. With the time scales corresponding to the cool-
liguid at a certain temperature becomes larger than the timing rates, the string density does not have enough relaxation

B. Effects of cooling rate
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of energy at the end point configurations obtained from the
cooling runs, the energy would be that of the=2/3 state
and this is the limiting value reached for arbitrarily small
cooling rates. In this sense, the= 2/3 configurations with no
defects frozen in is the ideal glass that would be obtained
from slow cooling.

VIl. CONCLUSION

In this paper, we have presented a detailed study of a
nonrandomly frustrated spin system that exhibits glassy be-
havior as exemplified by nonexponential relaxations, rapidly
diverging time scales, and aging. The crucial features of the
model that were related to the glassy dynamics (ayehe
presence of extended spatial structures @md phase tran-

\ sition involving these structures that is driven by a parameter
4 controlling the frustration in the system. The extended spatial
\ structures are reminiscent of the dynamical heterogeneities
observed in experiments’] and simulations of Lennard-
Jones liquidg9]. One of the conjectures based on our study
is that these dynamical heterogeneities are a consequence of
B the frustration in the system and they are made up of par-
ticles that are in the most energetically unfavorable positions.
This conjecture should be experimentally verifiable.

In our model, we have argued that the presence of a ther-
modynamic phase transition is responsible for the glassy be-

time to explore string density sectors other than 2/3. At lowhavior. The nature of this phase transition is unusual in that
temperatures, where the defect density is small, the energy df€ time scale divergence is much stronger than what would
the system can be written &(T)=EqyingP) + Edefec(T) be expected based on the dynamics of usual thermal critical
where the first term is the energy of string seqtan zero ~ Points. We have no clear understanding of the source of this
defect situation, and the second term is the excitation energynusual behavior, however, it seems certain that the presence
arising from a nonzero defect densipyT), and can be writ- of the extended structures is a .c_ru0|al factor.. T_hls obser\{atlon
ten asEgeee( T)=Eop(T). For infinitely slow cooling, the !eads.to the intriguing possibility thet a S|mller transition,
defect number density(T) is expected to be Arrhenius. |nvoIV|.ng fche dynamical heterogeneltles, underlies the glaesy
Since the system gets stuckpat 2/3, Egyind P) is a constant beha_vlor in supercooled liquids. Measurement of_ eorrelatlon
equal t0E 4, d(2/3). The energy fluctuation of the system is functions related to the dynamical heterogeneities should
mainly from the contribution 0E e T), the dynamics of shed some I|ght.on th|s_ ISSUE. ) ,

the system is dominated by the relaxation of defects. In this FUrther work is now in progress to identify the exact na-
picture, the system will fall out of equilibrium at tempera- ture of the phase transition in our model. The main question

tures wherep(T) falls out of equilibrium at different cooling that we are addressing is the reason for the rapid divergence

rates. So by cooling continuously into low temperature re-Cf ime scales. The scenario we have observed is reminiscent
y v y P f the transition in random-field Ising mod€l&1] and un-

gime we are essentially probing the dynamical behavior of ding this similaritv should | d
the defects. From the measured dependence of the energy 8frstanding this similarity should go a long way toward an-

temperature, we have extracted the behaviopF) and swering the question of what pllaye the role of the quenched
compared it to the equilibrium defect density that has ar{andomness in a supercooled liquid.

Arrhenius form[41]. As can be seen from Fig. 16, the defect
number density curve(T) deviates from the equilibrium
curve, and the deviation occurs at lower temperatures for The work of B.C. was supported in part by NSF Grant
lower cooling rates. We, therefore, conclude that the coolindNo. DMR-9815986 and the work of H.Y. was supported by
rate dependence of the energy in the CTIAFM arises fronrDOE Grant No. DE-FG02-ER45495. We would like to thank
the freezing in of nonequilibrium defect densities. If the R. K. Zia, W. Klein, H. Gould, S. R. Nagel, and J. Kondev
CTIAFM was subjected to the steepest descent minimizatioffor many helpful discussions.
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FIG. 16. Defect density(t) as a function ofd=T"? for dif-
ferent cooling ratey compared to the equilibrium, Arrhenius form.
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